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Abstract
We study the ground state of the±J Ising spin glass on the triangular lattice
with an arbitrary concentrationp of negative bonds. In agreement with a
previous study on the square lattice, it is found that the spin correlation exponent
η remains constant over a range of defect concentrationpc1 <p<pc2.
Furthermore, the value ofη obtained is 0.33 ± 0.02 which agrees, within
error bars, with the square lattice result. This indicates that the spin glass
phases on the two lattices are in the same universality class. However, the
model on the triangular lattice has an upper critical concentration atp = pc2
that is not present for the square lattice. This transition is found to be due to
a percolation of frustrated plaquettes which drives a crossover to a frustrated
antiferromagnetic phase. We show that this occurs atpc2 = 0.8472± 0.0001
with the usual percolation exponents for two dimensions.

PACS numbers: 05.50.+q, 64.60.Cn, 75.10.Nr

1. Introduction

The short-range±J Ising system is one of the most widely studied models of a spin glass.
The exchange interactionsJij are quenched random variables of fixed magnitudeJ but random
sign. Specifically, the distribution is given by

P(Jij ) = pδ(Jij + J ) + (1 − p)δ(Jij − J ), (1)

wherep ∈ [0,1]. The Hamiltonian is of the usual Edwards–Anderson [1] form, with only
nearest-neighbour bonds. Our present understanding of this model and spin glasses in general,
is contained in a number of reviews [2–5].

On a square lattice, there is a general consensus that forp = 0.5 a spin glass does
exist at zero temperature. However, whether it exists for small finite temperatures is still a
point of contention. One body of work [6–9] finds that the spin glass transition occurs at a
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temperatureTc ∼ 0.23J , while others [10, 11] present contrary evidence. Forp �= 0.5, early
indications [12] that theT = 0 spin glass is maintained have since been confirmed [13] on the
square lattice. A spin correlation exponentη = 0.34± 0.02, defining an algebraic decay in
correlations [

〈S0SR〉2
]

av
∼ R−η (2)

was found to be unchanged forp down to 0.115.
The Ising model in two dimensions, without any magnetic field, is particularly susceptible

to solution by combinatorial methods. One such method is the Pfaffian method [14, 15]
which is perhaps best suited to solve models with disorder. Essentially, the model consists
of non-interacting lattice fermions, and can also be formulated in terms of Grassmann variables
[16, 17]. An account of the±J Ising model in fermionic language has been given a while
ago [18], and its potential for probing the zero-temperature limit fully explored. More
recently the relevance of random bond Ising models, as ensembles of fermions, to disordered
superconductors and quantum Hall states has been introduced [19, 20].

There have not been many studies of the±J Ising model on the triangular lattice.
Published results include numerical estimates of the ground-state energy [21] and some
estimates of the defect concentrationpc1 where ferromagnetism disappears. These are
pc1 ≈ 0.10–0.15 [22] andpc1 ≈ 0.165–0.170 [23]. Nevertheless, knowledge of the fully
frustrated case (p = 1) is extensive. In particular, the entropy has been calculated by Wannier
[24] and the spin correlation exponent by Stephenson [25] who derived the asymptotic form

〈S0SR〉 ∼ R−1/2 cos(2πR/3). (3)

Clearly this suggests that there has to be a crossover between the spin glass and the fully
frustrated model at some concentration betweenpc1 and 1. The idea of such a crossover
has been suggested [26] but, to our knowledge, no evidence has been previously available.
We are able to demonstrate the existence of a unique upper critical concentration,pc2, that
locates this crossover. Atp = 1 all plaquettes are frustrated. Asp is decreased the number
of frustrated plaquettes is reduced until a percolation threshold is reached. The spin glass
regime occurs at concentrations below this percolation threshold. We showed earlier that a
characteristic feature of the spin glass regime is the presence of extended states within a fermion
formalism.We find that as we increasep from within the spin glass regime, the extended states
disappear at precisely the concentration that marks the percolation threshold, thus enabling us
to define a unique value forpc2. The crossover then is driven by a percolation of frustrated
plaquettes, but it should be emphasized that this concept is quite distinct from that of frustrated
percolation [27].

2. Formalism

The full details of the formalism as applied to the square lattice have been given earlier
[18]. The adaptation to the triangular lattice is straightforward and only a brief outline
is given here. The partition function is written as [14]

Z = 2N
[∏

〈ij〉
cosh(J/kT )

]
(detD)1/2 (4)

where the product is over all bonds on theN site lattice and the matrixD is real,skew-symmetric
and of order 6N. The Pfaffian is precisely the square root of the determinant ofD. Using a real
unitary transformation,D can be cast in 2× 2 block diagonal form with

D | α〉 = −ε | β〉 D | β〉 = ε | α〉. (5)
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We refer to theε as eigenvalues which are 3N in total. However only a subset, which we call
defect eigenvalues, contributes to the physics of the±J model ground state. The number of
defect eigenstates is exactly equal to the number of frustrated plaquettes in the system. In the
T → 0 limit these eigenstates are confined to those nodes of the lattice that are vertices of the
frustrated plaquettes. Their eigenvalues take the form

ε = (2/3)X exp(−2rJ/kT ) (6)

whereX is a real number andr is an integer. For a particular configuration,X andr can be
determined exactly by using degenerate state perturbation theory [18], withr coinciding with
the order at which the eigenvalue emerges. The changes in ground-state energy and entropy
due to the introduction of frustration are respectively

�F = 2J
∑
d

rd (7)

�S = k
∑
d

lnXd (8)

where the sums extend over all defect eigenvalues. For the fully frustrated model, the total
energy is−3JN + �F = −NJ and the entropy is as reported by Wannier [24].

Concerning the eigenstates|α〉 and|β〉, it can be easily shown that they are not unique
since the respective eigenvalue is unchanged by an arbitrary rotation of the basis. Nevertheless
it is possible to define [13] the spatial extent of an eigenstate through an invariant measure,l,
according to

l = 〈x〉 + 〈y〉 〈s〉 = (P 2 + Q2)1/2 (9)

wheres is x or y, andP = 〈α|s|α〉 − 〈β|s|β〉 andQ = 2〈α|s|β〉. To understand these
equations, note that the eigenstates are given in the basis of localized frustrated plaquette
states [18], each of which has some coordinates (x, y). Note also thatP is the Manhattan
spatial extent. The overlapQ is often zero or otherwise small.

The importance of this spatial extent is seen from its distribution function which, if a spin
glass exists, we expect to take the form [13, 18]

N(l) ∼ L2l−ρ . (10)

Specifically,N(l ) is the number of eigenstate pairs with spatial extent larger thanl for a lattice
of linear dimensionL. The exponentρ provides a signature [18] of the nature of the states: if
ρ > 2 all are localized, whileρ < 2 indicates the presence of extended states. Essentially, it is
the appearance of extended states which destroys ferromagnetic order and induces a crossover
to a spin glass [13]. It is also argued thatρ is related to the spin correlation exponent by
η = 2 − ρ. Delocalization, of fermions, in the Ising model context, has also been discussed
elsewhere [19, 20], although it is not yet clear how the arguments relate to the analysis
given here.

3. Localized and extended states

We have collected data for a triangular lattice in the spin glass regime for three values of
sample sizeL (64, 128 and 256). Typically, 512 samples were used in each configurational
average. The boundary was of triangular shape to ensure that the entropy converged correctly
to the result of Wannier [24]. Bonds on the boundary were set to infiniteJ which is equivalent
to nesting the sample in an infinite unfrustrated lattice. This scheme has the advantage of
preventing the system from using the boundary to counter the effects of frustration and also
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Figure 1. Distribution N(l) (normalized to an L = 256 sample size) for p = 0.5 for samples with
L = 64 (diamonds), 128 (pluses) and 256 (squares). A straight line fit to the L = 256 data is also
shown.

avoids the complexities of using periodic conditions with fermions. Figure 1 shows the
distribution function N(l ) for p = 0.5. A least squares fit of the data gives ρ = 1.67 ± 0.02.
This agrees, within error bars, with the value for the square lattice [13] where the data was
less well conditioned. Figures 2 and 3 show the data for p = 0.2 and 0.175 with the fit for
p = 0.5 also drawn for comparison. The value of the exponent ρ has remained constant.
Figure 4 shows data for L = 256 and four values of concentration p (0.17, 0.16, 0.15 and 0.10)
compared with the p = 0.175 fit. A fit at p = 0.17 is possible but with larger gradient and
error bars. This suggests that the spin glass exists for p > pc1, where pc1 lies between 0.170
and 0.175. Further evidence is forthcoming from the data for the entropy which can be fitted
to the expression

S(L) = S + βL−1. (11)

We find that the coefficient β is very small for p = 0.175, positive for p > 0.175 and negative
otherwise. Basically, the effect of the boundary tends to increase the degeneracy of the ground
state in the presence of extended states. A similar result was observed on the square lattice
[13]. We conclude that pc1 is in the range 0.170–0.175 which overlaps with the result of
Achilles et al [23]

Looking above p = 0.5, figures 5 and 6 show the distribution function for p = 0.75
and 0.8. The gradients of the fits are the same as for p = 0.5 although we have to focus on
the asymptotic regime (l >∼ 30) for p = 0.8. The data for p = 0.83 is shown in figure 7.
Power law behaviour can still be seen for (l >∼ 80) in the L = 256 data with the gradient of
the straight line fit unchanged, but we are close to the limits of the useful data due to the finite
size of the sample. Finally, the data for p = 0.84 is shown in figure 8, where the gradient of
the fit is 1.79 ± 0.08, but again we have a limited range due to the finite sample size. Clearly,
we are close to an upper critical concentration pc2 at around 0.84. In the concentration range,
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Figure 2. As figure 1 for p = 0.2. The dotted line is the straight line fit to the L = 256 data; the
fit for p = 0.5 (dot–dash line is included for comparison).
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Figure 3. As figure 2 for p = 0.175.

pc1 < p < pc2, a spin glass phase exists characterized by a universal exponent ρ. A different
type of phase occurs for p > pc2, and examining that regime will give us a more precise
estimate of pc2.
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Figure 4. Distribution N(l) for L = 256 samples for p = 0.17 (diamonds), 0.16 (pluses), 0.15
(squares) and 0.10 (crosses). The line fit for p = 0.175 is also shown.
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Figure 5. As figure 1 for p = 0.75.

4. Percolation

We now consider the high-concentration regime. At p = 1, all plaquettes on the lattice
are frustrated. For lower values of p, we study clusters of frustrated plaquettes. A cluster
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Figure 6. As figure 1 for p = 0.8.
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Figure 7. As figure 1 for p = 0.83.

is defined as a set of frustrated plaquettes that are nearest-neighbours to at least one other
member of the cluster. For p below the percolation threshold, no spanning clusters exist. The
size of a cluster is measured by the number of frustrated plaquettes it contains. Percolation
occurs if the largest cluster is comparable to the sample size.
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Figure 8. As figure 2 for p = 0.84.
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Figure 9. Largest cluster size (normalized to total number of plaquettes, 2N ), as a function of p
for sample sizes L = 64, 128, 256, 512, 1024 and 2048. The transition is sharper for larger L.

Figure 9 shows the largest cluster size M for various sample dimensions L (64, 128,
256, 512, 1024 and 2048). M is the average over the largest clusters of a large number of
configurations. In the figure, M is expressed as a fraction of the total number of plaquettes
in the sample, 2N. There is a rapid increase where we expect the crossover to occur. The
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Figure 10. As figure 9 for the correlation length (normalized to linear size of the sample).

correlation length is also studied. This can be defined as ξ = (Lx + Ly)/2, where the largest
cluster has linear dimensions Lx and Ly. This is shown in figure 10, where evidence of the
percolation threshold is again obvious.

In order to make contact with the scaling behaviour of percolation theory and to obtain
a very accurate estimate for pc2, we use finite-size scaling for the correlation length, ξ , the
largest cluster size, M, and also the mean cluster size, S, defined in the usual way

S =
∑

s s
2ns∑

s sns
. (12)

The sums are over cluster size and ns is the number of clusters of size s. By analogy with
standard percolation theory [28], we use the following finite-size scaling equations:

ξ ∼ Lfξ
[
(p − pc2)L

1/ν] (13)

M ∼ L−β/νfM
[
(p − pc2)L

1/ν] (14)

S ∼ Lγ/νfS
[
(p − pc2)L

1/ν] (15)

where fξ , fM and fS are universal functions. We ignore the issue of excluding the largest
cluster, a common procedure in finite scaling analysis in percolation theory. It is not
straightforward to do, and excellent data collapse occurs anyway.

The percolation of frustrated plaquettes on the triangular lattice is actually a site
percolation problem on a hexagonal lattice, but with special rules. Nevertheless, we expect and
find that the percolation exponents are the same, that is β = 5/36, γ = 43/18 and ν = 4/3.
Figures 11–13 show the data collapses for ξ , M and S with data taken for several sample sizes
L (128, 256, 512, 1024 and 2048). These data collapses are very sensitive to changes in pc2
or the percolation exponents. If we use the above values of β, γ and ν, the optimum data
collapse gives the threshold with a remarkable level of accuracy. The value of pc2 obtained is
0.8472 ± 0.0001.

This estimate of pc2 is entirely consistent with the value of the critical concentration
determined in the previous section. There we found that ρ retained a constant value of
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Figure 11. Data collapse for the correlation length, using equation (13). Sample sizes are L = 128
(diamonds), 256 (pluses), 512 (squares), 1024 (crosses), and 2048 (triangles).
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Figure 12. Data collapse for the largest cluster size, using equation (14). Symbols are as for
figure 11.

1.67 ± 0.02 up to a concentration of about 0.83. By p = 0.84, ρ had increased to 1.79 ± 0.08,
a very strong indication that it is tending towards a value of 2 at pc2. The critical value, ρ = 2,
marks the disappearance of extended states.
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Figure 13. Data collapse for the mean cluster size, using equation (15). Symbols are as for
figure 11.

5. Energy and entropy

Results for the ground-state energy and entropy as calculated from equations (7) and (8) are
given in table 1. The values were obtained at different lattice sizes and extrapolated to infinity.
The energy values compare well with other work [21]. We have not been able to obtain
reliable data for p > pc2 since the crossover is also characterized by a considerable increase
in memory requirement. Nevertheless rough estimates have been obtained [29] for the entropy
by only computing the contribution from first-order degenerate state perturbation theory [18]
with sparse matrix techniques. However, the entropy is a smooth function of p even in the
vicinity of the crossover. Closer to p = 1 the data are consistent with the analytical result [30]
that the entropy differs from the result of Wannier by −3(1 − p) ln 3.

6. Conclusions

The key results of this work are the identification of two critical concentrations, pc1 and pc2,
and the characterization of two phases. Finite size scaling yielded an extremely accurate
estimate for pc2 of 0.8472 ± 0.0001, the threshold for percolation of frustrated plaquettes.
At p = 1, the fully frustrated antiferromagnet is known to be in a universality class with
other fully frustrated systems such as the Villain model [31–33].We propose that the essential
feature of this universality class is an infinite cluster of frustrated plaquettes. In which case, all
triangular systems withpc2 <p< 1 will also be members, with a correlation function exponent
of 1/2 as in equation (3), although the oscillatory factor in that equation is obviously special
to the fully frustrated system. It is now fairly well established [34] that the critical behaviour
of the Ising ferromagnet on dilution with ferromagnetic bonds of different magnitude is
essentially unchanged from that of the pure system. Randomness alone does no more than
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Table 1. Ground-state energy (in units of J ) and entropy (in units of k) per spin for selected values
of p. The uncertainty in the last decimal place is indicated by the figures in parentheses.

p Energy Entropy

0.100 −2.4070 (3) 0.01077 (1)
0.110 −2.3497 (2) 0.01389 (2)
0.120 −2.2940 (4) 0.01759 (4)
0.130 −2.2403 (4) 0.02156 (3)
0.140 −2.18767 (1) 0.025861 (2)
0.150 −2.13855 (2) 0.03027 (3)
0.160 −2.0918 (2) 0.03424 (2)
0.170 −2.0495 (3) 0.03746 (3)
0.175 −2.03052 (8) 0.03893 (4)
0.180 −2.01264 (8) 0.04018 (4)
0.190 −1.97740 (9) 0.04293 (7)
0.200 −1.9471 (4) 0.04532 (5)
0.250 −1.83237 (6) 0.05473 (5)
0.300 −1.76593 (8) 0.06004 (5)
0.350 −1.7299 (2) 0.0636 (1)
0.400 −1.71389 (8) 0.0647 (1)
0.450 −1.7091 (2) 0.065028 (5)
0.500 −1.7085 (1) 0.065035 (2)
0.550 −1.70746 (6) 0.06514 (1)
0.600 −1.7030 (1) 0.06552 (4)
0.650 −1.6927 (2) 0.0664 (2)
0.700 −1.6732 (2) 0.06782 (3)
0.750 −1.6406 (1) 0.0707 (2)
0.800 −1.5926 (2) 0.0754 (2)
0.810 −1.58136 (1) 0.076438 (8)
0.820 −1.56797 (7) 0.07818 (9)
0.830 −1.55605 (9) 0.0793 (1)

introduce small finite size corrections. We are not aware of similar work on systems involving
frustration, but would expect analogous behaviour to occur.

In the concentration range pc1 <p < pc2, the exponent ρ that signals the presence of
extended states remains constant at 1.67 ± 0.02, implying a value for η of 0.33 ± 0.02. This
is consistent with values found earlier for the square lattice [13], and establishes a universality
class for these systems. There does remain a question about the crossover region itself. The
value of pc2 as approached from above is defined extremely precisely. However, the constancy
of ρ was seen up to about p = 0.83, about 0.01 below pc2 and then, as p approaches pc2,
it increased towards the critical value of 2 that signals the disappearance of extended states.
Similar behaviour also occurs in a very small region close to pc1. Now, certainly the whole of
the range pc1 <p<pc2 can be characterized by the presence of extended states, but there is a
possibility that the concentration range over which ρ and η are constant may be less than the
given range by a very small amount. It seems more likely, however, that the deviation from
constancy that we are observing very close to pc1 and pc2 is a finite size effect and, for an
infinite system, ρ and η are constant throughout the range.

The approach we have taken in this work is specifically geared to zero temperatures and,
as such, complements the bulk of work in this field which is done for finite temperatures, but
which encounters major problems in extrapolating to the zero-temperature limit. Our method,
by contrast, is exact at the T = 0 limit.
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